ANAESTHESIA AND ANALGESIA CHALLENGES FOR EARLY NEUTERING PROGRAMS

Sheilah Robertson, BVMS (Hons), PhD, DECVAA, DACVA, MRCVS

TALKING POINTS
- What is “early-age” spay/neuter?
- Unique neonatal physiology
- Pain in neonates
- Drug pharmacokinetics and metabolism
- Practical protocols

PAEDIATRIC SPAY AND NEUTER CONCERNS
- Developmental concerns
- Few detailed studies on anaesthesia
- Pain in neonates
 - Assessment
 - Needs
 - Drugs
CONCERNS
- Obesity
- Stunted growth
- Musculoskeletal disorders
- Delayed closure of growth plates
- Lower urinary tract disease
 - Penile urethral diameter
- Perivulvar dermatitis

BENEFITS
- Population control
- Mammary neoplasia
- Behaviour

ANAESTHETIC CONCERNS
- Survey of New York veterinarians
 - > 90% agreed there were benefits to early neutering
 - ~ 60% believed this would carry an increased anaesthetic risks

Spain et al 2002; JAAHA; 38: 482-488
Cats under <2 kg have a higher risk of death.

Time of death — first 3 hours after surgery

SURGERY AND ANAESTHETIC COMPLICATIONS

775 cats - Complications based on age

- < 12 weeks – shortest anaesthesia time and few complications
- 13-24 weeks – very few problems
- > 24 weeks – highest complication rate, longest surgery times

Howe 1997; JAVMA 211; 57-62

Early Spay and Neuter Position Statements

“The AVMA supports the concept of early (8 to 16 weeks of age) spay/neuter in dogs and cats in an effort to reduce the number of unwanted animals of these species.”

“The AAFP supports neutering early in life (6-14 weeks of age) as a safe and effective method of decreasing cat overpopulation, and one that confers long-term medical and behavioural benefits to the individual cat.”

Also endorsed by BSAVA, AAHA and CVMA
ASSOCIATION OF SHELTER VETERINARIANS

- Animals adopted into homes should be spayed or neutered
- Voucher or pre-paid programs have a compliance rate of < 40%

NEUTERING PROCEDURES

- Ovariectomy or ovariectomy
- Castration

THE IDEAL ANAESTHETIC

- Safe
- Simple
- Effective for males and females
- Efficient
 - Large numbers of animals
- Cost-effective
 - Drugs and equipment
- Rapid recovery
- Analgesia
PRE-REQUISITES FOR SUFFERING

<table>
<thead>
<tr>
<th>Sentience</th>
<th>Consciousness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylogenetic status</td>
<td>Awake</td>
</tr>
<tr>
<td>Functional nervous system</td>
<td>Asleep</td>
</tr>
<tr>
<td>Stage of development</td>
<td>Anaesthesia</td>
</tr>
</tbody>
</table>

ONTOGENY OF NOCICEPTION AND PAIN PERCEPTION

- Varies between species
 - Degree of maturity at birth
- Varies within a species
 - Gestational age
NEUROLOGICAL MATURITY AND ONSET OF CONSCIOUSNESS DETERMINE WHEN MAMMALIAN YOUNG CAN SUFFER AFTER BIRTH

<table>
<thead>
<tr>
<th>EEG Features</th>
<th>Species</th>
<th>Exceptionally immature</th>
<th>Immature</th>
<th>Mature</th>
</tr>
</thead>
<tbody>
<tr>
<td>electrical silence</td>
<td>marsupial</td>
<td>kitten</td>
<td>puppy</td>
<td>mouse pup</td>
</tr>
<tr>
<td>spikes</td>
<td>calf</td>
<td>fawn</td>
<td>foal</td>
<td>lamb</td>
</tr>
<tr>
<td>continuous REM/nonREM sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>short epochs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Mellor, Patterson-Kane and Stafford: The Sciences of Animal Welfare

WHAT DOES THIS MEAN FOR KITTENS?

- Conscious wakefulness not present at birth
- Kitten welfare is likely protected until 7 days of age

WHAT DOES THIS MEAN FOR KITTENS?

- They are sentient and conscious when early neutering is performed
- The neonatal nervous system may be vulnerable to damage
 - Plasticity
MANAGING PAIN IN HUMAN NEONATES

- 1985 – Jeffrey Lawson, 1.9 kg neonate
- Surgery for PDA correction
- Sole “anaesthetic” agent was pancuronium
- Reasons
 - “Jeffrey was too sick to tolerate powerful anaesthetics”
 - “It has not been demonstrated that babies feel pain”

BARRIERS TO PREVENTING AND TREATING PAIN IN HUMAN NEONATES

- Pain assessment in non-verbal humans
- Fear of adverse side-effects from drugs
- Belief that neonates are not sufficiently developed to experience pain
 - “they will not remember it”
NEONATAL INJURY

Rat pup model
- Injury in one tissue alters sensory processing throughout the body
- Injury early in life alters sensory processing throughout life

IMPACT OF EARLY PAIN EXPERIENCES

- Three groups (87 infants)
 - Uncircumcised boys
 - Circumcision with local anaesthesia
 - Circumcision with no analgesia
- Studied response to vaccination pain at 4-6 month (videotapes)
 - Cry duration
 - Facial action
 - VAS

Effect of neonatal circumcision on pain response during subsequent routine vaccination

Joulaa T, Todd J, Lamarche C, Green N.
Pain scores
- Uncircumcised < local anaesthesia < no anaesthesia

Conclusion
- Infants retain a memory of previous painful events
- Response to subsequent painful stimuli are altered

Altered pain sensation
- Anticipation of pain, threat cues
- Stress disorders
- Attention deficit disorders
- Self destructive behaviours

Why this matters
What we do here has impacts later in life
PAIN ALSO CAUSES PHYSIOLOGIC CHANGES

- Metabolic and hormonal stress response
 - Catabolism and weight loss
- Increased catecholamines
 - Hypertension, tachycardia, arrhythmias
- Altered respiratory function
- Ileus
- Immunosuppression

ANALGESIC STRATEGIES

<table>
<thead>
<tr>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-drug therapies</td>
</tr>
<tr>
<td>Swaddling</td>
</tr>
<tr>
<td>Suckling</td>
</tr>
<tr>
<td>Sucrose</td>
</tr>
<tr>
<td>Skin-to-skin contact</td>
</tr>
</tbody>
</table>

BMC Pediatrics

Research article
Kangaroo mother care diminishes pain from heel lance in very preterm neonates: A crossover trial
Celeste Johnson1, Fransine Filion1, Martha Campbell-Yvon1, Cathleen Coates2, Kathleen McNaughton1, Jasmine Byron1, Marilyn Atla2, G. Allen Finlay3 and Clare-Dominique Walker4
Compared warmth, sucrose and a pacifier for vaccination
- Warmth decreased crying and grimacing
- Heart rate reflected analgesia

Other Considerations

Isolation (psychological stressor) resulted in hyperalgesia

Surgical Trauma

- Pain is driven by inflammation
- The greater the trauma the greater the inflammation
- SMALL INCISIONS
THE IDEAL ANAESTHETIC
- Safe
- Simple
- Effective for males and females
- Efficient
 - Large numbers of animals
- Cost-effective
 - Drugs and equipment
- Rapid recovery
- Analgesia

PAEDIATRIC PATIENTS - CONCERNS
- Unique physiology
- Hypothermia
- Hypoglycaemia
- Immature metabolism
- Monitoring

NEONATAL PHYSIOLOGY
CARDIOVASCULAR
- Sympathetic innervation to the heart is incomplete at birth
- Parasympathetic innervation is anatomically mature
- Cardiac output is heart rate dependent

HYPOTHERMIA CAUSES BRADYCARDIA
Neonatal Physiology
- High oxygen requirements
- Increased risk for hypoxaemia

Shivering increases oxygen demand

Neonatal Physiology Metabolism
- P450 enzyme activity is low at birth
- Takes several months to reach adult function

Fasting and Feeding
- Fasting
 - Low glycogen stores
 - No, or minimal fasting
 - Do not remove kittens from Queen
- Feed as soon as possible after surgery
PRE-OPERATIVE ASSESSMENT
- Accurate weight

ANAESTHETIC PROTOCOLS

INJECTABLE

INHALANT

ANAESTHETIC CHOICES

INHALANT AGENTS
- Large "dose" when used alone
- Cardio-respiratory depression
- Stressful induction
- Equipment needs and expense
 - Usually not a suitable option for high volume clinics
ANAESTHETIC CHOICES INJECTABLE DRUGS

<table>
<thead>
<tr>
<th>PROPERTIES</th>
<th>ROUTE OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short acting</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>Reversible</td>
<td>Intramuscular</td>
</tr>
<tr>
<td></td>
<td>Intravenous</td>
</tr>
</tbody>
</table>

PROPERTIES
- Short acting
- Reversible

ROUTE OF ADMINISTRATION
- Subcutaneous
- Intramuscular
- Intravenous

ANAALGESICS

- Opioids
 - Buprenorphine
 - Pethidine
 - Morphine
 - Methadone
 - Butorphanol

INDUCTION

- Ketamine
 - IM
 - Analgesic properties
 - Wide safety margin
PREMEDICATION
- Anticholinergic drugs
 - Atropine, glycopyrrolate
- Cardiac output = HR x SV
- May not be needed if using ketamine

TOTAL INJECTABLE PROTOCOLS
- Balanced anaesthesia
- Can include an analgesic
- Can do more animals at one time
- May be partly reversible
 - Rapid recovery

DRUG DOSING - ACCURACY
- Dilute drugs
- Use insulin syringes
MONITORING

- Non-invasive
 - Auscultation
 - Observation
 - Pulse oximetry
 - Indirect blood pressure
 - Temperature
- Neonatal kittens
 - HR is 200 beats/minute

KITTEN STUDY – UNIVERSITY OF FLORIDA

32 kittens
- 7-12 weeks old
- 17 females
- 15 males

Body weight
- Mean ± SD: 906 ± 155g
- Range: 636-1205g

ANAESTHETIC PROTOCOL - 1

- Induction with isoflurane by mask
- Butorphanol 0.4 mg/kg IM
- Maintained on isoflurane / O₂
ANAESTHETIC PROTOCOL-2
- Medetomidine 40 µg/kg
- Ketamine 20 mg/kg
- Buprenorphine 20 µg/kg
- Mixed together
 - Subcutaneous injection
- Atipamezole after surgery

DURATION OF SURGERY
- Ovariohysterectomy
 - 6.8 ± 1.5 minutes
- Castration
 - 48 ± 23 seconds

RESULTS

<table>
<thead>
<tr>
<th>Group</th>
<th>Time to loss of toe pinch*</th>
<th>Time to sternal recumbency**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iso But</td>
<td>3.9 ± 1.1 min</td>
<td>3.9 ± 1.7 min</td>
</tr>
<tr>
<td>MKB</td>
<td>3.9 ± 1.0 min</td>
<td>8.8 ± 2.2 min</td>
</tr>
</tbody>
</table>

* NS
**P < 0.05
RECOVERY

ISOFLURANE / Butorphanol MKB

RECOVERY – 1 HOUR

RESULTS

<table>
<thead>
<tr>
<th>Group</th>
<th>T°C</th>
<th>HR</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoflurane</td>
<td>37.7</td>
<td>184</td>
<td>32</td>
</tr>
<tr>
<td>Butorphanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKB</td>
<td>38.2</td>
<td>175</td>
<td>39</td>
</tr>
</tbody>
</table>
CONCLUSION
- Both techniques were acceptable
- MKB may be more suited to a shelter environment where multiple kittens are handled at one time and inhalant anaesthetic equipment is unavailable or limited

ENDOTRACHEAL INTUBATION
- Increased odds (x3) for short procedures
 - < 30 minutes
- Respiratory obstruction as a cause of death more common in cats
- Have intubation supplies ready
- ± Oxygen by mask

OTHER ANALGESICS – LOCAL ANAESTHETICS
- "splash" blocks
- Intra-testicular blocks
Lack of information on NSAID use in neonates
Potential benefits and risks but few conclusive facts

COX-1 and COX-2 expression change during fetal development and after birth
Prostaglandins are important for normal CNS, renal and cardiovascular development
COX-2 is involved in organ development

Prostaglandins are involved in
- Sleep regulation
- Pain
- Cerebral blood flow
- Neuroprotection
- Thermoregulation
- Renal function
- Gastrointestinal function
- Osteogenesis
NSAIDs in Young Cats

Not as a “First Line” Analgesics

<table>
<thead>
<tr>
<th>Drug</th>
<th>Age Limit</th>
<th>Weight Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carprofen</td>
<td>20 weeks</td>
<td>None</td>
</tr>
<tr>
<td>Meloxicam</td>
<td>6 weeks</td>
<td>2 kg</td>
</tr>
<tr>
<td>Robenacoxib</td>
<td>16 weeks</td>
<td>2.5 kg</td>
</tr>
</tbody>
</table>

Labels state: “Do not use in…” or “Safety has not been established in…”

Top 10 List for Anaesthesia Problems…….

Hypothermia
Papers

Retrospective study of the prevalence of postanaesthetic hypothermia in cats

J. I. Bednarska, P. Szczech, J. Gil, S. Saló, J. Serra, E. Saló

Time to extubation (mins)	# of cats	Deaths	Mortality index %
Normothermia | 13 ± 11 | 5 | 0 | 0
Slight hypothermia | 12 ± 7 | 73 | 2 | 2.73
Moderate hypothermia | 13 ± 10 | 166 | 2 | 1.20
Severe hypothermia | 26 ± 25 | 29 | 2 | 6.89

ADVERSE EFFECTS OF HYPOTHERMIA

- Delayed recovery
- Post-operative shivering and increased oxygen demands
- Pain
- Bleeding
- Blood viscosity
- Wound infection
- Cardiac complications
 - Bradycardia, arrhythmias
SIMPLE AND CHEAP!

BUBBLE PACKING

FORCED WARM AIR
PRE-WARMING

SUMMARY

- Neonatal anaesthesia and surgery can be successful
- Analgesia is essential
- Injectable protocols are ideal in shelter environments
- Intubation is not required
- Keep them warm